Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Acta Pharmaceutica Sinica B ; (6): 1326-1336, 2023.
Article in English | WPRIM | ID: wpr-971753

ABSTRACT

Neuropathic pain is a chronic disease that severely afflicts the life and emotional status of patients, but currently available treatments are often ineffective. Novel therapeutic targets for the alleviation of neuropathic pain are urgently needed. Rhodojaponin VI, a grayanotoxin from Rhododendron molle, showed remarkable antinociceptive efficacy in models of neuropathic pain, but its biotargets and mechanisms are unknown. Given the reversible action of rhodojaponin VI and the narrow range over which its structure can be modified, we perforwmed thermal proteome profiling of the rat dorsal root ganglion to determine the protein target of rhodojaponin VI. N-Ethylmaleimide-sensitive fusion (NSF) was confirmed as the key target of rhodojaponin VI through biological and biophysical experiments. Functional validation showed for the first time that NSF facilitated trafficking of the Cav2.2 channel to induce an increase in Ca2+ current intensity, whereas rhodojaponin VI reversed the effects of NSF. In conclusion, rhodojaponin VI represents a unique class of analgesic natural products targeting Cav2.2 channels via NSF.

2.
Acta Pharmaceutica Sinica ; (12): 3691-3700, 2023.
Article in Chinese | WPRIM | ID: wpr-1004659

ABSTRACT

Artemisinin is a sesquiterpene lactone natural product that contains an endoperoxide bond. Artemisinin has various biological activities including antimalarial, anti-tumor, antiviral and anti-fibrotic activity. Owing to the poor pharmacokinetic properties of artemisinin, its derivatives are currently used in clinic and frequently reported in literature. Although numerous derivatives of artemisinin have been reported, no study has been carried out yet to study the effect of substituted groups with different acid-base property on the antimalarial activity. Among these derivatives, the C-10 carbon artemisinin derivatives are often reported, and their corresponding 10β epimer show much better antimalarial activity than 10α epimer with large-sized substitute. However, there is currently no stereoselective synthesis to efficiently prepare the privileged 10β epimer of C-10 carba artemisinin. To address these two scientific questions, we herein first report an optimized method to stereoselectively synthesize the 10β epimer of C-10 carba artemisinin (98∶2 d.r.). Second, we employed the optimized method to synthesize a series of C-10 carba artemisinin derivatives with different acid-base properties. The antimalarial examination indicated that those derivatives with neutral groups or basic group of short chain showed similar antimalarial activity as dihydroartemisinin (DHA). The acidic group could dramatically decrease the antimalarial effect and was more than 22-fold less effective than DHA or the neutral ones. This study will shed light on the development of new generation of artemisinin derivatives with potent activity.

3.
Acta Pharmaceutica Sinica ; (12): 2250-2259, 2023.
Article in Chinese | WPRIM | ID: wpr-999146

ABSTRACT

Small molecule fluorescent probes have gained widespread attention for their advantages of high selectivity, sensitivity, and easy to operate, and have played a critical role in the detection of various species. They have also demonstrated great potential in the field of biomedical research. Iron, as the most abundant transition metal in the human body, plays a vital role in many physiological functions. Due to the influence of the reductive microenvironment of cell, ferrous ion (Fe2+) is the main component of labile iron in living cells. Heme, consisting of Fe2+ and protoporphyrin IX, is one of the main signaling molecules that wrap biological iron in the human body, and also participates in many physiological and pathological processes. Therefore, the development of small molecule fluorescent probes for detecting Fe2+ and heme as effective monitoring tools will help to further understand their pathological and physiological functions, with potential applications in other fields. This review summarizes the research progress of small molecule fluorescent probes for Fe2+ and heme detection in recent years, and provides insights into future directions for their development.

4.
Acta Pharmaceutica Sinica B ; (6): 982-989, 2022.
Article in English | WPRIM | ID: wpr-929339

ABSTRACT

A resurging interest in targeted covalent inhibitors (TCIs) focus on compounds capable of irreversibly reacting with nucleophilic amino acids in a druggable target. p97 is an emerging protein target for cancer therapy, viral infections and neurodegenerative diseases. Extensive efforts were devoted to the development of p97 inhibitors. The most promising inhibitor of p97 was in phase 1 clinical trials, but failed due to the off-target-induced toxicity, suggesting the selective inhibitors of p97 are highly needed. We report herein a new type of TCIs (i.e., FL-18) that showed proteome-wide selectivity towards p97. Equipped with a Michael acceptor and a basic imidazole, FL-18 showed potent inhibition towards U87MG tumor cells, and in proteome-wide profiling, selectively modified endogenous p97 as confirmed by in situ fluorescence scanning, label-free quantitative proteomics and functional validations. FL-18 selectively modified cysteine residues located within the D2 ATP site of p97. This covalent labeling of cysteine residue in p97 was verified by LC‒MS/MS-based site-mapping and site-directed mutagenesis. Further structure-activity relationship (SAR) studies with FL-18 analogs were established. Collectively, FL-18 is the first known small-molecule TCI capable of covalent engagement of p97 with proteome-wide selectivity, thus providing a promising scaffold for cancer therapy.

5.
Acta Pharmaceutica Sinica ; (12): 1439-1452, 2020.
Article in Chinese | WPRIM | ID: wpr-823293

ABSTRACT

Medicinally active molecules are those that have pharmacological effects. Research on protein targets of these molecules not only clarifies their mechanism of action, but also deepens our understanding of biological systems. Here we review recent advances in protein targets of drugs used in clinical practice or in preclinical research. They have various functions including anti-inflammatory, anti-malarial, anti-tumor and other biological activities. Activity-based protein profiling (ABPP) and cellular thermal shift assay (CETSA) are two useful methods to identify the protein targets of small molecules. ABPP depends on a derivative active molecule probe to pull down the protein targets to reveal the interaction mechanisms between the active molecules and targets. Drug target engagement also can be assessed by means of CETSA based on ligand-induced changes in protein thermal stability. In the CETSA approach, the active molecules do not need to be chemically modified. Combining the CETSA method with quantitative mass spectrometry is an effective approach to study the effect of compounds on the thermal profile of a cellular proteome and identify the protein targets. ABPP and CETSA can be complementary and effectively clarify the protein targets. The study of protein targets will help reveal the mechanism of action of medicinal molecules, reveal toxic mechanisms and aid in the discovery of new medicinal targets to promote the process of drug development.

6.
Acta Pharmaceutica Sinica ; (12): 9-17, 2008.
Article in Chinese | WPRIM | ID: wpr-268180

ABSTRACT

Pin1 is a phosphorylation-dependent peptidyl-prolyl cis/trans isomerase, which specifically catalyzes the amide bond isomerization of phosphoserine-proline or phosphothreonine-proline in mitotic phosphoproteins. Pin1 induces the conformational changes to control the function of phosphoproteins. Depletion of Pinl on various human cancer cell lines cause mitotic arrest and apoptosis. Pin1 is an attracting therapeutic target for anticancer and its inhibitors might be potential anticancer drug. In this review, Pin1 inhibitors and the catalytic mechanism, the biological function of Pin1 and its role in oncogenesis are summarized.


Subject(s)
Humans , Apoptosis , Enzyme Inhibitors , Pharmacology , Mitosis , NIMA-Interacting Peptidylprolyl Isomerase , Neoplasms , Peptidylprolyl Isomerase , Metabolism , Phosphoproteins , Chemistry , Metabolism , Phosphorylation , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL